skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Walsh, Brian M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Space‐based observations of the signatures associated with STEVE show how this phenomenon might be closely related to an extreme version of a SAID channel. Measurements show high velocities (>4 km/s), high temperatures (>4,000 K), and very large current density drivers (up to 1 μA/m2). This phenomena happens in a small range of latitudes, less than a degree, but with a large longitudinal span. In this study, we utilize the GEMINI model to simulate an extreme SAID/STEVE. We assume a FAC density coming from the magnetosphere as the main driver, allowing all other parameters to adjust accordingly. We have two main objectives with this work: show how an extreme SAID can have velocity values comparable or larger than the ones measured under STEVE, and to display the limitations and missing physics that arise due to the extreme values of temperature and velocity. Changes had to be made to GEMINI due to the extreme conditions, particularly some neutral‐collision frequencies. The importance of the temperature threshold at which some collision frequencies go outside their respective bounds, as well as significance of the energies that would cause inelastic collisions and impact ionization are displayed and discussed. We illustrate complex structures and behaviors, emphasizing the importance of 3D simulations in capturing these phenomena. Longitudinal structure is emphasized, as the channel develops differently depending on MLT. However, these simulations should be viewed as approximations due to the limited observations available to constrain the model inputs and the assumptions made to achieve sensible results. 
    more » « less
  2. Abstract This study presents observations of magnetopause reconnection and erosion at geosynchronous orbit, utilizing in situ satellite measurements and remote sensing ground‐based instruments. During the main phase of a geomagnetic storm, Geostationary Operational Environmental Satellites (GOES) 15 was on the dawnside of the dayside magnetopause (10.6 MLT) and observed significant magnetopause erosion, while GOES 13, observing duskside (14.6 MLT), remained within the magnetosphere. Combined observations from the THEMIS satellites and Super Dual Auroral Radar Network radars verified that magnetopause erosion was primarily caused by reconnection. While various factors may contribute to asymmetric erosion, the observations suggest that the weak reconnection rate on the duskside can play a role in the formation of asymmetric magnetopause shape. This discrepancy in reconnection rate is associated with the presence of cold dense plasma on the duskside of the magnetosphere, which limits the reconnection rate by mass loading, resulting in more efficient magnetopause erosion on the dawnside. 
    more » « less
  3. Abstract Reconnection at Earth's magnetopause drives magnetospheric convection and provides mass and energy input into the magnetosphere/ionosphere system thereby driving the coupling between solar wind and terrestrial magnetosphere. Despite its importance, the factors governing the location of dayside magnetopause reconnection are not well understood. Though a few models can predict X‐line locations reasonably well, the underlying physics is still unresolved. In this study we present results from a comparative analysis of 274 magnetic reconnection events as observed by the Magnetospheric Multiscale (MMS) mission to determine what quantities affect the accuracy of such models and are most strongly associated with the occurrence of dayside magnetopause reconnection. We also attempt to determine under what upstream solar wind conditions each global X‐line model becomes least reliable. 
    more » « less
  4. Introduction: Magnetopause reconnection is known to impact the dayside ionosphere by driving fast ionospheric flows, auroral transients, and high-density plasma structures named polar cap patches. However, most of the observed reconnection impact is limited to one hemisphere, and a question arises as to how symmetric the impact is between hemispheres. Methods: We address the question using interhemispheric observations of poleward moving radar auroral forms (PMRAFs), which are a “fossil” signature of magnetopause reconnection, during a geomagnetic storm. We are particularly interested in the temporal repetition and spatial structure of PMRAFs, which are directly affected by the temporal and spatial variation of magnetopause reconnection. PMRAFs are detected and traced using SuperDARN complemented by DMSP, Swarm, and GPS TEC measurements. Results: The results show that PMRAFs occurred repetitively on time scales of about 10 min. They were one-to-one related to pulsed ionospheric flows, and were collocated with polar cap patches embedded in a Tongue of Ionization. The temporal repetition of PMRAFs exhibited a remarkably high degree of correlation between hemispheres, indicating that PMRAFs were produced at a similar rate, or even in close synchronization, in the two hemispheres. However, the spatial structure exhibited significant hemispherical asymmetry. In the Northern Hemisphere, PMRAFs/patches had a dawn-dusk elongated cigar shape that extended >1,000 km, at times reaching >2,000 km, whereas in the Southern Hemisphere, PMRAFs/patches were 2–3 times shorter. Conclusion: The interesting symmetry and asymmetry of PMRAFs suggests that both magnetopause reconnection and local ionospheric conditions play important roles in determining the degree of symmetry of PMRAFs/patches. 
    more » « less
  5. null (Ed.)
  6. Abstract Magnetic reconnection at the magnetopause has long been studied with multi‐spacecraft observations. In this work, data from the five satellite THEMIS mission during the years of 2008–2010 are used to generate statistics regarding the spatial extent of magnetopause reconnection. The presence of a reconnecting magnetopause is determined with the Walén relation as two satellites cross the magnetopause simultaneously. In some cases both satellites measure reconnection whereas in others one satellite measures reconnection and the other does not. This study finds that two spacecraft are more likely to observe a contiguous reconnection region the closer they are spatially, and that reconnection is not always extended around the entire magnetopause. Plasmaβgradient drifts are investigated as a cause of local reconnection suppression. Spacecraft position along the magnetopause flanks is also investigated as a possible spatial limitation to reconnection due to changes in shear flow or boundary thickness. 
    more » « less
  7. The space physics community continues to grow and become both more interdisciplinary and more intertwined with commercial and government operations. This has created a need for a framework to easily identify what projects can be used for specific applications and how close the tool is to routine autonomous or on-demand implementation and operation. We propose the Application Usability Level (AUL) framework and publicizing AULs to help the community quantify the progress of successful applications, metrics, and validation efforts. This framework will also aid the scientific community by supplying the type of information needed to build off of previously published work and publicizing the applications and requirements needed by the user communities. In this paper, we define the AUL framework, outline the milestones required for progression to higher AULs, and provide example projects utilizing the AUL framework. This work has been completed as part of the activities of the Assessment of Understanding and Quantifying Progress working group which is part of the International Forum for Space Weather Capabilities Assessment. 
    more » « less